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Structure of Interfaces from Uniformity of the 
Chemical Potential 
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It is shown that a generalized chemical potential suggested by the potential- 
distribution theory is uniform even in a nonuniform fluid. Leng, Rowlinson, 
and Thompson had already observed its uniformity through the liquid- 
vapor interface in the penetrable-sphere model, in mean-field approximation. 
Following those authors, we exploit the uniformity of that generalized 
chemical potential to obtain unified and transparent derivations of the 
results of Ono and Kondo and of van der Waals on the liquid-vapor 
interfaces in the lattice-gas model and in the model of attracting hard 
spheres, respectively, both in mean-field approximation. 

KEY W O R D S :  Surfaces; interfaces; nonuniform fluids; density profile; 
lattice gas ; a t t ract ing hard spheres ; van der Waals theory. 

1. INTRODUCTION 

Leng et al. (1> found the density profile of the liquid-vapor interface of the 
penetrable-sphere model (2) in a mean-field approximation. They also cal- 
culated the local thermodynamic activity (or, equivalently, chemical potential) 
as defined by the prescription of the potential-distribution theory, (3-5) and 
found that it is uniform through the interface, where it has the same value as 
it does in the bulk phases. In the theory of Leng et aL, uniformity of the 
activity implies an integral equation for the density profile. Their observation 
amounted to verifying that the profile they had derived satisfied that integral 
equation; but they could equally well have asserted uniformity of the activity 
from the start, and then taken the resulting integral equation to determine the 
profile. (6~ That idea for determining interfacial density profiles has been used 
before, ~7,8~ but with different expressions for the local activity. 
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In Section 2 we show that the activity defined by the potential-distribu- 
tion theory is indeed uniform even in an otherwise nonuniform fluid. The 
methods of Leng et al. may therefore be adapted to find the interfacial profile 
in mean-field approximation for any model fluid. In Section 3 this is done for 
the lattice gas and in Section 4 for a continuum fluid of attracting hard 
spheres. For  the former, the resulting equation for the density profile is that 
previously obtained for the same model by Ono and Kondo;  C9~,2 it is also 
that of the van der Waals, ~n~ Cahn-Hilliard C12~ theory, with a second differ- 
ence in place of a second derivative, as is appropriate to a discrete space. 
For  the model continuum fluid the resulting equation for the density profile 
is nonlocal in a way proposed by recent authors; in the further approximation 
that the density gradient is small, it reduces to the conventional theory with 
a characteristic length determined by the second moment of the attractive 
component of the intermolecular potential. 

These results are not new; it is the transparency of their derivation that 
justifies this account. 

2. C H E M I C A L  POTENTIAL IN A N O N U N I F O R M  FLUID 

We follow the original derivation of the formulas of the potential- 
distribution theory, (3,~ but now allowing the fluid to be nonuniform. The 
nonuniformity may arise from the interfaces between phases, from the walls 
of the containing vessel, from external fields, or from any combination of these. 

We suppose such a fluid of N molecules to be in equilibrium at a uniform 
temperature T in a vessel of volume V. From the Boltzmann distribution law, 
the probability of finding the molecules 1,..., N in the respective elements of 
volume d~l ..... d~-~ centered at rl ,..., rN is 

Q~I exp[-  WN(rl,..., rN)/k T ] d'rl ... d-rN (1) 

where k is Boltzmann's constant; WN is the potential energy of the system in 
the configuration rl,..., ru, including the energies of interaction of the 
molecules with the walls of the vessel, with any external fields, and with each 
other; and QN is the configuration integral, 

Q~ = fv "'" fv exp[-  Wz~(rl,..., rN)/kT] dT~ ... dzN (2) 

the integrations extending throughout t 1 volume V. Then the mean density 
p(r) at the position r in the vessel is 

p(r) = NQff 1 fv "'" fv exp[ -  W~c(rl .... , r~r 1, r)/kT] dr1 ... drzr (3) 

2 The density profile for this model was obtained in higher (quasichemical) approximation 
by Parlange. (z~ 
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When an Nth molecule is added at r to a system of N - 1 molecules in 
the configuration rl ,..., rN-~, the potential energy of the system increases by 

W(rl ..... rN_l, r) = W~(rl,..., r~ - l ,  r) - WN-I(rl,..., rN-1) (4) 

This includes the interaction of the added particle with the walls, with any 
external fields, and with the other particles. In terms of this q", Eq. (3) 
becomes 

p(r) = (NQN_I/Q~)(exp(-~F/kT))~ (5) 

where 

(exp( -W/kT)>r=Qf f~_ l fv . . . f vexp( - [ tF(r l  .... , r~_l, r) 

+ WN_I(rl ..... rN_l)]/kT} d~'l ... drN_l (6) 

is the mean value of the function exp[-~F(rl .... , r~_ 1, r)/kT] at the position 
r in a fluid of N - 1 particles (at the variable positions r~ .... , rN_ 1) that is at 
equilibrium in the volume V at the temperature T. When N and V are both 
large, the N-particle and ( N -  1)-particle fluids are negligibly different, so 
the p(r) in Eq. (5) is then the local density in the same equilibrium fluid as that 
in which <exp(-qe/kT))r is evaluated. 

Though p(r) and (exp(- tF/kT))r  are separately r-dependent, their ratio, 
according to Eq. (5), is just NQu-~/QN, which is independent of r. This 
uniform value of p(r)/(exp(-Uf/kT)>, may now be called the activity h, for 
that is what it is when the fluid is uniform; that is, when p and (exp(-~F/kT)) 
are separately r-independent. Thus, 

p(r)/(exp(-tF/kT)>~ = NQN-1/QN = h, independent o f t  (7) 

Likewise, the (configurational) chemical potential ~ defined by /z = 
kTln[p(r)/(exp(-W/kT))~] is uniform, its uniform value being k T l n  h. 

Other definitions of chemical potential or activity in a nonuniform fluid 
are possible, (7-9"~3-1v) all reducing to the conventional thermodynamic 
chemical potential or activity when the fluid is uniform. According to how it 
is defined or identified, such an activity may or may not be uniform in a non- 
uniform fluid; when it is, it then may (but need not) be equivalent to that in 
Eq. (7). It is the present p(r)/(exp(-qe/kT))r that Leng et al. (~ called the 
local activity, and they verified its uniformity through the liquid-vapor 
interface of the penetrable-sphere model, in the mean-field approximation. 

The idea is now to express (exp(-W/kT))~ as a functional of p(r), 
whereupon Eq. (7), with ~ independent of r, becomes a functional equation 
for p(r). In the following sections we do this for two different models in mean- 
field approximation, following Leng et al., and we thereby determine the 
density profiles of the liquid-vapor interfaces in those models. 
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3. DENSITY PROFILE OF THE L I Q U I D - V A P O R  INTERFACE 
OF THE LATTICE GAS IN THE MEAN-F IELD 
A P P R O X I M A T I O N  

There are N molecules in a volume V. The volume is divided into V/v 
cells, each of volume v. Each cell has e faces, and shares each one with one 
of  c neighboring cells. The energy of interaction of the molecules is the sum 
of the energies of interaction of pairs: when the two molecules of the pair are 
in the same cell, that energy is infinite; when they are in neighboring cells, 
it is - E (r > 0); and when they are neither in the same cell nor in neighboring 
cells, it is zero. 

We shall first see how to obtain the equation of state of the homogeneous 
lattice gas, in the mean-field approximation, from Eq. (7), by taking p and 
( e x p ( - W / k T ) )  to be independent of r, and it will then be clear how to apply 
Eq. (7) to obtain the density profile through the liquid-vapor interface in the 
same mean-field approximation. 

In the lattice gas, exp( -~F/kT) ,  whose mean value appears in Eq. (7), 
is zero in every occupied cell, and is exp(mE/kT) in every empty cell that has m 
occupied and c - m unoccupied neighboring cells. The mean-field (Bragg- 
Williams) approximation is that in which the molecules are taken to occupy 
the cells at random, subject only to the restrictions that no cell be occupied 
by more than one molecule and that the average number of molecules per 
cell be some prescribed vp = vN[V < 1. Random occupancy implies that 
the probabilitypm that m of the c neighbors of any cell are occupied and e - m 
are empty is 

c! 
P m =  m I (e - m ) f  (vp)m(1 - VO)c-m (8) 

and that, independently of the state of occupancy of its neighbors, the proba- 
bility that any cell is empty is 1 - vO. Then from Eqs. (7) and (8), 

p/;~ = (e-~/kr) 

= (1 - vp) ~ pine ~lkr (9) 
m = O  

= (1 -- vp)[1 + (e 'mr - 1)vp] ~ (10) 

But the mean-field approximation is in the first place only accurate when 
each molecule has many neighbors and interacts weakly with any one of 
them; (18-21) i.e., in the limit r O, c--> ~ ,  c~/kT fixed. Therefore, to the 
degree that it is accurate at all, Eq. (10) is equivalent to 

= [p/(1 - vp)]e -c''~'tr'r (11) 
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The sum ZPm exp(mE/kT) in Eq. (9) is the mean value of exp(-W/kT)  
over the empty cells alone, (exp(-"F/kT)> being its mean value over all the 
cells and 1 - v p  the probability that a cell is empty. Having replaced 
{1 + [exp(E/kT) - 1]vp} c by exp(c~vp/kT) in going from Eq. (10) to Eq. (11) 
amounts to having replaced ~ p,~ exp(me/kT) by exp[(~/kT)~ mpm]; i.e., to 
having approximated the average of the exponential of  - tF /kT ,  over the 
empty cells, by the exponential of  the average. 

Though with cE/kT of order 1, the A given by Eq. (10) differs only by 
terms of the order of  the small quantity ~/kT from that given by Eq. (11), it 
is the latter that is the canonical expression for A in the mean-field approxi- 
mation;  for if A(p) is the activity as a function of the density p at fixed 
temperature, then it is an exact symmetry property of  the lattice gas that ~22) 

vZA(p)A(1/v - p) = e-~,/kr (12) 

which Eq. (11) satisfies exactly, but Eq. (10) only approximately. This is the 
analog of an earlier observation about the mean-field approximation to the 
penetrable-sphere model. (2) 

We turn now to the determination of the density profile through the 
liquid-vapor interface in this same lattice-gas model, still in mean-field 
approximation. The cells are imagined arranged in layers at positions indexed 
by z = ..., - 2 ,  - 1, 0, 1, 2,... (Fig. 1). A cell in the layer at z has c '  of  its 
neighbors in the adjacent layer at z + 1; c '  in the adjacent layer at z - 1; 
and the remaining c - 2c' of  its neighbors in the same layer with itself, at z. 
In the illustration in Fig. 1, c = 6 and c'  = 1. Liquid and vapor phases are 
present in equilibrium, with z -+ m in the bulk liquid, say, and z -+ - oo in 
the bulk vapor. The number density p is now z-dependent: p = p(z), with 
P(m) = o~ and p ( -  oo) = pg, the densities of  the bulk liquid and vapor phases, 
respectively. 

Fig. 1. Cells in layers indexed by z. In 
this illustration the cells are cubical and 
the array is simple cubic, with c = 6, 
c p ~-- 1 ,  

z -3 p 
- 2  

--I 

0 

I 

2 

3 
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In  the mean-field approximat ion  to this inhomogeneous  lattice gas we 
again take the molecules to occupy the cells at random,  subject to the restric- 
t ion that  no cell be occupied by more  than one molecule;  but  now, instead 
of  addit ionally prescribing merely the overall average density N/V,  we 
prescribe the (as yet unknown)  local density p(z) at each z. 

For  a cell at z, the probabi l i ty  Plmn that  exactly l (not more  and not  
fewer) of  its c '  neighbors at z + 1, that  m of  its c - 2c'  neighbors at z, and 
that  n of  its c '  neighbors at z - 1, are occupied, is, by the approximat ion  of  
r a n d o m  occupancy,  

c ' !  
Ptmn= It (C' - 1) l [vp(z + 1)]~[1 - vp(z + 1)] ~ 

(c - 2c ' ) !  
• u m! (c - 2c' -- m)! [vP(z)]'~[1 vP(z)]C-2c'-m 

c'[ x [vp(z - 1)]~[1 - vp(z - 1)] c '-~ (13) 
n ! (c'  - n)! 

By that  same approximat ion,  the probabil i ty  that  a cell at z is empty  is 
1 - vp(z), independently of  the states of  occupancy of  its neighbors.  There-  
fore, f rom Eqs. (7) and (13), 

p(z)/h = (e-V/~r)~ 

O ~ C - - 2 C  ~ C e 

= [1 - vp(z)] ~ ~,  ~ ptmne (~+m+n~'/~r (14) 
/ = 0  m = O  n = O  

= [1 - vp(z)][1 + (e '/kr - 1)vp(z + 1)] c" 

• [1 + (e '/kr - 1)vp(z)]C-2c'[1 + (e ̀ /~r - 1)vp(z - 1 )y  (15) 

with h the uni form value of  the activity. The latter is known f rom the ho le -  
particle symmet ry  of  the lattice gas to be (22~ 

h = v-  le-C~/2kr (16) 

Equat ions  (14) and (15) are generalizations of  Eqs. (9) and (10). With  ;~ 
independent  o f  z, Eq. (15) is a second-order  difference equat ion for  the density 
profile p(z). 

I f  we take the limit e/kT-+ O, c and c'  -+  oo, with cE/kTand c'E/kTfixed, 
Eq. (15) becomes 

p(z)/[1 - vp(z)]h : exp{[cp(z) + c'A2p(z)]v,/kT} (17) 

where 4 2 means the second difference: A2p(z) = p(z + 1) + p(z - 1) - 2p(z). 
Equat ion  (17) is a generalization of  Eq. (11) and reduces to it when the fluid 
is uni form;  i.e., when p(z) is independent  o f  z. Having  gone f rom Eq. (15) to 
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Eq. (17) amounts to having replaced ~ . ~ p ~ m ,  exp[(l + m + n)e/kT] in 
Eq. (14) by exp[(E/kT) ~ ~. ~ (l + m + n)p,m,]; i.e., to having approximated 
the average of the exponential of - W / k T ,  over the empty cells, by the 
exponential of the average, just as before in going from Eq. (10) to Eq. (11). 
The analogous step was taken by Leng et aL in their mean-field theory of the 
density profile in the penetrable-sphere model. (I~ 

By the hole-particle symmetry of the lattice gas, (22~ the density profile 
p(z) must be antisymmetric about p = t/2v; that is to say, there is a function 
R(z) of the continuous variable z, such that 

R(-z)  + R(z) = 1 (18 )  

for all z, and a fraction z' (0 ~< z' < 1) such that 

vp(z) = R(z - z') (19) 

for all integer z. The relation (22~ pg + p~ = 1Iv between the densities of the 
bulk phases is the special case ]z[ = oo of Eqs. (18)-(19). We may determine 
the function R(z) from Eq. (17), but not the number z', which is determined by 
accidental, nonthermodynamic factors, such as the precise integer numbers 
N and V/v of molecules and cells, and the shape of the container. When 
account is taken of Eq. (16), it is seen that the required antisymmetry ex- 
pressed by Eqs. (18)-(19) would be satisfied exactly by the solution of Eq. (17) 
but only approximately by the solution of Eq. (15); just as in the homo- 
geneous fluid the symmetry expressed by Eq. (12) is satisfied exactly by the 
of Eq. (11) but only approximately by that of Eq. (10). 

From Eqs. (16) and (17), 

c'v A2p = c(�89 - vp) + (kT/E) ln[vp/(1 - vp)] (20) 

which is the difference equation for p(z) in the form in which it was obtained 
previously by Ono and Kondo. (9>,a They explained how to solve it numerically 
and gave sample profiles. The functions R(z) of Eqs. (18)-(19) for two such 
profiles are shown in Fig. 2. 

Let the right-hand side of Eq. (11) be called A(p): 

A(p) = [p/(1 - vp)]e . . . .  afkr (21) 

It is the activity of a homogeneous lattice gas of density p, as a function of p 
at fixed temperature, in the mean-field approximation. In terms of this 
function, Eq. (20), with Eq. (16), becomes 

(vc'~/kT) A2p = ln[A(p)/;~] (22) 

3 The second-difference operator A 2 of Ono and Kondo is slightly different from the one 
used here. If we call theirs 2~gK and still call the present one A 2, then AgKp(z -- 1) = 
A~p(z). 
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Fig. 2. The function R(z) of Eqs. (18)-(19) for two sample density profiles. The profiles 
vO(z) are identical to R(z) except for an indeterminate shift of the z scale. 

or, equivalently, in terms of the (configurational) chemical potential M(p) = 
k T l n  A(p) and its uniform value/~ = k T l n  )t, the difference equation for p(z) 
becomes 

vc'r AZp = M(p) - - /x  (23) 

This has the form of the fundamental equation of the van der Waals, <I1> 
Cahn-Hilliard <12~ theory, but with a second difference in place of a second 
derivative, as appropriate to a discrete space. Finite differences, unlike 
derivatives, are nonlocal; the occurrence here of A2p is a foreshadowing of 
the nonlocality we shall find when this same line of argument is applied to a 
continuum fluid, in the next section. 

4. DENSITY PROFILE OF THE L IQUID-VAPOR INTERFACE 
OF A MODEL C O N T I N U U M  FLUID IN THE MEAN-FIELD 
APPROXIMATION 

We again imagine a fluid in which the total energy of interaction of the 
molecules is the sum of the energies of interaction of all pairs, but now we 
take the interaction of a pair to be that of attracting hard spheres. Let the 
fluid consist of a liquid and a vapor phase, and let z measure distance in the 
direction perpendicular to the interface, with the bulk liquid at z = oo and 
the bulk vapor at z = -oo.  This is as before, except that now z is a con- 
tinuous distance, whereas before it was a discrete, dimensionless index. 
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Let q~ be the probability that if another hard-sphere molecule identical 
to those in the fluid is inserted in the equilibrium fluid while the configuration 
of the latter remains fixed, and if the inserted molecule is centered at a 
randomly chosen point in the plane at z, then the newly added hard sphere will 
be found to fit among those of the fluid that are already there. Then from 
Eq. (7), 

p(z)/A = (exp( -~F/kT) ) z  = qz(exp(-VFattr/kT))~ (24) 

where ~F~tt r is the potential energy of attraction between the added test 
molecule and the other molecules of the fluid. Equation (24) is analogous to 
Eq. (14) in the lattice-gas model, with what we here call q~ equal there to 
1 - vp(z), and with the present (exp(-Wattr/kT))~ given there by 

~ ~,,p,,~ exp[(l + m + n), /kT] 

We again treat the attractions in mean-field approximation, and so, as before, 
replace (z3~ (exp(-'f~ttr/kT))~ by exp(-(~F~tt~)JkT). The conditions under 
which this approximation is accurate are also those in which the equilibrium 
configuration of the fluid is identical to that of a fluid in which the molecules 
interact only as hard spheres, with no additional interaction; ~24) so we also 
replace q~ by p(z)/Ahs[p(z)], where Ahs(p) is the activity of an equilibrium fluid 
of such nonattracting hard spheres, of density O. [A small-gradient approxi- 
mation is also implicit here: only if p(z) varies little over a distance equal to 
the sphere diameter can the arrangement of the molecules of the fluid about 
a test particle at z be sensibly the same as that about a test particle in a 
homogeneous fluid of nonattracting hard spheres of uniform density equal 
to p(z).] Then Eq. (24) becomes 

A~[p(z)] exp((~F~ttr),/kT) = A (25) 

Now let ~t~(r) ,  a function of the distance r between molecular centers, 
be the potential energy of attraction that is superimposed on the hard-sphere 
repulsions. Then 

(~F~tt~)~ = f (~tt~(r)p(z + ~) dz (26) 

where r is here the distance between a point that is fixed in the plane at z and 
a variable point P with z coordinate z + ~ (so that r and ~ vary with the 
location of P); dr is an element of volume centered at P;  and the integration 
is over all points P of space. But when the model fluid is homogeneous, of 
density p, its activity A(p) as a function of p at fixed temperature, in this 
mean-field approximation, is (z~ 

A(O ) = a~,(p)e -2~pl~r (27) 
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where 

- �89  f r dr (28) a 

is van der Waals' a parameter. (25) Then from Eqs. (25)-(28) we obtain an 
integral equation for the density profile p(z), 

- f  r + ~) - p(z)] dr = kTln{A[p(z)]/a} (29) 

or, equivalently, in terms of the (configurational) chemical potential M(p) = 
k T  In A(p) and its uniform value i~ = k T  In A, 

- f  Catt~(r)[p(z + C) - p(z)] dr = M[p(z)] - l~ (30) 

This was in essence derived by van der Waals. (~1) It is the analog of Eq. (23) 
for the lattice gas, with the nonlocality now manifest. 

When p(z) is much more slowly varying than r Eq. (30) becomes 
the differential equation 

m d2p/dz 2 = M(p) -- I* (31) 

where in d dimensions 

t '  
= - ( 1 / 2 d )  J r~r dT (32) m 

The coefficient m in Eq. (31) is, by Eq. (32), a measure of the second moment 
of the attractive component of the intermolecular potential; and m > 0 
because r < 0. Equation (31) is even more obviously analogous to Eq. (23) 
than is Eq. (30). Equations (31) and (32) are also due to van der Waals; (tl) 
Eq. (31) is the basic equation of the van der Waals, m) Cahn-Hilliard C~m 
theory. 

If  r is interpreted more generally as ~26~ - k T c ( r ) ,  with c(r) the 
direct correlation function, then Eq. (32) for the coefficient of d2p/dz 2 in 
Eq. (31) becomes 

(kT/2d) f r%(r) dr (33) m 

familiar in another context. ~17~ 
There are many known generalizations of these formulas, including 

improved approximations, ~8'27-3m and formally exact generalizations of 
Eq. (30) that are nonlocal in the manner of Eq. (30) and that contain direct 
correlation functions in place of intermolecular interaction potentials. ~3>3m 
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